Site icon Троицкий вариант — Наука

Надежда… на экзопланетную жизнь

NASA/JPL-Caltech
NASA/JPL-Caltech
Борис Штерн

Совсем недавно мы комментировали открытие Проксимы b, планеты, ставшей своего рода вишенкой на экзопланетном торте. И вот 22 февраля 2017 года с помпой объявлено об открытии сразу трех планет в зоне обитаемости другого красного карлика — TRAPPIST-1. Эта система находится почти в десять раз дальше Проксимы Центавра, но есть по крайней мере два обстоятельства, делающие находку второй вишенкой на торте за последние несколько месяцев. Это:

— сразу три планеты в зоне обитаемости, это повышает вероятность, что хотя бы одна из них пригодна для жизни;

— эти планеты, в отличие от Проксимы b, транзитные, то есть проходят по диску звезды для земного наблюдателя, что резко облегчает наблюдение их атмосфер.

Пару слов об истории сенсации. Система была открыта в 2015 году небольшим бельгийским телескопом TRAPPIST. Название — Transiting Planets and Planetesimals Small Telescope South — подогнано под марку бельгийского пива. Телескоп расположен в Чили в обсерватории Ла-Силья, принадлежащей Европейской южной обсерватории.

С его помощью обнаружили три транзитные планеты у холодного красного карлика 2MASS J23062928-0502285 [1], который получил второе, более человеческое имя TRAPPIST-1, — это была первая планетная система, обнаруженная данным телескопом. Потом система наблюдалась европейским телескопом VLT (Very Large Telescope), наконец благодаря данным инфракрасного космического телескопа NASA «Спитцер» систему «распутали» и выяснили, что планет семь. Собственно, о последнем шаге и была пресс-конференция NASA 22 февраля.

Рис. 1. Кривая блеска звезды TRAPPIST-1 за время 20-дневного сеанса космического телескопа «Спитцер». Зеленые точки — наблюдения наземными телескопами. По вертикали — светимость звезды в данный момент по отношению к средней светимости. Ромбиками отмечены транзиты конкретных планет. Выбросы точек вверх, скорее всего, звездные вспышки. Транзит планеты h только один. Ее период и радиус орбиты оценены из продолжительности единственного транзита (см. рис. 2)
Рис. 2. Кривые блеска звезды при транзитах каждой из семи планет

К обитаемой зоне относят планеты e, f, g, хотя с первого взгляда планета d по интенсивности обогрева подходит больше, чем g. Тут требуется довольно сложная дискуссия с оценками возможного парникового эффекта, включающая массу неопределенностей. Конечно, понятие обитаемой зоны очень условно.

Как бы мы ни определяли зону обитаемости, а с реальной пригодностью для жизни каждой из этих планет есть серьезные проблемы. Те же проблемы, что и для Проксимы b. Они связаны с природой красных карликов.

  1. Это звезды с очень бурной магнитной активностью. У них толстый конвективный слой. В отличие от Солнца, где тепло переносится наружу в основном диффузией фотонов, там преобладает конвекция. На Солнце тоже есть конвекция, из-за чего и появляются пятна, вспышки, протуберанцы, а на Земле — магнитные бури и полярные сияния. Там все эти явления происходят куда интенсивнее.
  2. У этих звезд в начале биографии сильно меняется светимость. Первые миллионы лет они светят в десятки, а то и в сотни раз ярче, чем в установившемся режиме.
  3. Зона обитаемости красных карликов находится настолько близко к звезде, что планеты попадают в приливное замыкание: либо они всё время обращены к звезде одной стороной, либо сутки на них длиннее их года (для системы TRAPPIST-1 вероятней первый вариант).

Что делать, природа второй раз менее чем за год подсовывает нам именно такие не очень обнадеживающие планетные системы. Это неудивительно — их намного легче найти спектрометрическим методом (Землю у Солнца таким образом обнаружить невозможно), они с большей вероятностью оказываются транзитными, причем транзиты более контрастны наконец красных карликов больше, чем желтых и оранжевых.

Рис. 3. Одновременный транзит трех планет. Кривая блеска снята 11 декабря 2015 года европейским телескопом VLT

Итак, данные по найденной системе TRAPPIST-1 (ошибки не приводим).

Планета Радиус орбиты Период Радиус планеты Интенсивность обогрева (в единицах земного)
b 0,011 а.е. 1,51 дня 1,09 Re 4,25
c 0,015 2,42 1,06 2,27
d 0,021 4,05 0,77 1,14
e 0,028 6,10 0,92 0,66
f 0,037 9,21 1,04 0,38
g 0,045 12,35 1,13 0,26
h 0,063 ~20 0,75 0,13

Звезда. Масса — 0,08 солнечной, радиус -0,117 солнечного, светимость — 0,5·10-3 солнечной, температура 2550К

Удалось грубо оценить и массы планет — из-за их взаимодействия транзиты немного смещаются во времени. Ошибки в определении массы велики, но уже можно заключить, что плотность планет соответствует скальной начинке.

Конечно, землеподобные планеты у солнцеподобных звезд будут найдены в обозримое время. Собственно, в данных «Кеплера» уже найдено несколько таких планет, только они очень далеко. Достаточно наблюдать за несколькими сотнями ярких звезд по всему небу (что планируется в ближайшие годы), и такие планеты будут обнаружены в пределах сотни световых лет (а если повезет, то и ближе).

На самом деле комфортные планеты у комфортных звезд находятся в пределах 15–20 световых лет (это следует из статистики, добытой «Кеплером»), но, чтобы их обнаружить, нужны космические интерферометры, которые появятся не скоро (см. [2]).

Надежда на то, что хотя бы одна из планет пригодна для жизни, остается. На них изначально могло быть много воды — они не могли образоваться там, где они сейчас, и должны были мигрировать к звезде с периферии протопланетного диска — из-за снеговой линии, где много ледяных тел. Правда, они мигрировали еще в ту эпоху, когда звезда была много ярче. Но оценки, сделанные для Проксимы b, показывают, что гидросфера планет могла пережить пекло длительностью в десятки миллионов лет.

Приливное замыкание не фатально, если у планеты есть толстая атмосфера и глобальный океан — тогда перенос тепла способен сгладить перепад температуры между дневным и ночным полушариями.

Более серьезная проблема — сдувание атмосферы звездным ветром и жестким излучением. На пресс-конференции прозвучало высказывание, что сейчас звезда спокойна. Это справедливо, если иметь в виду тепловое излучение, но не рентгеновское: TRAPPIST-1 — измерено напрямую космической обсерваторией XMM — излучает примерно столько же рентгена, что и Солнце. Поскольку планеты находятся в десятки раз ближе к звезде, чем Земля к Солнцу, их рентгеновское облучение на три порядка превосходит то, что получает Земля.

Прямой угрозы жизни рентген не несет — он поглощается атмосферой. Проблема в обезвоживании планеты: рентген и жесткий ультрафиолет разбивают молекулы воды — водород легко улетучивается, кислород связывается. Еще хуже то, что, раз есть интенсивный рентген, должен быть и интенсивный звездный ветер — он обдирает внешние слои атмосферы. Единственное спасение в данном случае — магнитное поле планеты. Есть ли у этих планет достаточно сильное поле — вопрос. Может быть, и есть.

Итак, остается надежда, что какая-то из планет системы TRAPPIST-1 пригодна для жизни. Можно ли эту надежду подтвердить или опровергнуть? Можно, и гораздо легче, чем для случая Проксимы b, в котором надо наблюдать либо отраженное, либо собственное тепловое излучение планеты.

Его очень трудно отделить от излучения звезды. Здесь же атмосферы планет можно наблюдать на просвет, что несравненно легче.

В случае с Проксимой b новый космический телескоп James Webb сможет что-то показать лишь в предельном случае: одно полушарие раскалено, другое — выморожено. В случае с TRAPPIST-1 реально увидеть линии поглощения в атмосферах планет. Или поставить какие-то ограничения сверху. Одно такое ограничение уже поставлено: внутренние планеты не обладают толстыми водородными атмосферами.

Рис. 4. Схема орбит системы TRAPPIST-1. Серым отмечена зона обитаемости. Пунктирными кругами — она же в несколько отличающейся трактовке

А есть ли теоретическая возможность, что James Webb обнаружит жизнь на одной из этих планет? Наиболее красноречивый маркер жизни — кислород. Он вполне детектируем и как озон, и как O2. Другое дело, что какое-то количество кислорода может образоваться, например, из-за диссоциации молекул воды жестким излучением звезды. Оценить, какое количество кислорода можно считать надежным маркером, не так просто. Надо знать темп диссоциации и темп связывания кислорода — здесь много неопределенностей. Но если кислорода столько же, сколько и на Земле, тут деваться уже некуда: такое может дать только жизнь. Если кислорода мало — это не значит, что жизни нет: на Земле первые пару миллиардов лет существования жизни его было мало.

В заключение хочется выразить сожаление, что Россию исследование экзопланет обошло стороной. Есть отдельные люди и отдельные работы, но не более того. А ведь эта область не требует гигантских установок — скорее, серого вещества и упорства, чем наша наука всегда могла похвастаться. Некоторую надежду дает российский проект «Миллиметрон» — криогенный космический телескоп с 10-метровым зеркалом: в проекте исследование экзопланет идет одним из первых пунктов. Однако это — тема для отдельной публикации.

Борис Штерн,
астрофизик, докт. физ.-мат. наук, вед. науч. сотр. Института ядерных исследований РАН (Троицк)

1. http://simbad.u-strasbg.fr/simbad/sim-id?Ident=2MASS+J23062928-0502285

2. http://trv-science.ru/2016/06/28/blizhajshie-prigodnye-dlya-zhizni-exoplanety/

Exit mobile version