Десять фактов об открытии динамического эффекта Казимира

Выделяя главные открытия 2011 года, журнал Nature поставил на первое место обнаружение динамического эффекта Казимира (см. полный список в [1]). Результаты исследования были опубликованы в статье [2]. Ниже приведена десятка главных фактов, касающихся этой знаменательной научной работы.

1. Динамический эффект Казимира состоит в излучении электромагнитных волн движущимся зеркалом (или другим объектом).

Десять фактов об открытии динамического эффекта Казимира
Изображение: Википедия

2. Для динамического эффекта Казимира принципиально, чтобы зеркало двигалось с ускорением. Кроме того, скорость движения зеркала должна быть большой (в идеале сравнимой со скоростью света).

3. Поскольку в реальном эксперименте практически невозможно обеспечить сравнимую со световой скорость движения макроскопического объекта (зеркала), авторы использовали обходной путь. Был взят волновод, условия отражения на одном из концов которого быстро менялись, что с точки зрения уравнений теории было эквивалентно перемещению этого конца со скоростью 0,4 световой. Излученные фотоны, характерные частоты которых составляли десятки гигагерц, детектировались на другом конце волновода.

4. Наблюдаемый эффект был очень мал. Авторам пришлось принять специальные меры для устранения всевозможных источников помех. В частности, установка была охлаждена до 50 тысячных градуса Кельвина для исключения температурных флуктуаций, на фоне которых можно было «потерять» вакуумные. Значительное внимание было уделено исключению других возможных «паразитных» эффектов.

5. Явление излучения фотонов движущимися с ускорением заряженными частицами известно более 100 лет, оно прямо следует из уравнений Максвелла, описывающих классическое электромагнитное поле. Новизна динамического эффекта Казимира состоит в том, что в этом случае излучает электрически нейтральный объект. В рамках классической физики эффект отсутствует, для его понимания необходимо учитывать квантовую природу электромагнитного поля.

6. Многие эффекты, связанные с квантованием электромагнитного поля, могут быть описаны в терминах флуктуаций электромагнитного вакуума. В квантовой механике величины электрического и магнитного полей в одной точке пространства не могут одновременно принимать определенные значения, в частности, не могут быть одновременно точно равны нулю. Поэтому, в действительности в отсутствие реальных фотонов поля всегда флуктуируют около нулевого значения. Извлечь энергию из этих флуктуаций, разумеется, невозможно (это означало бы создание вечного двигателя). Однако их присутствие обнаруживается в ряде эффектов. В динамическом эффекте Казимира вакуумные флуктуации служат затравкой, приводящей к рождению реальных фотонов. При этом на рождение фотонов тратится кинетическая энергия зеркала.

7. Эффект назван по аналогии с известным с середины XX века эффектом Казимира — притяжением тел из-за вакуумных флуктуаций поля между ними (см. рисунок). У такого «статического» эффекта Казимира есть классический аналог, хорошо известный морякам, — при волнении два расположенных рядом судна притягиваются.

8. Эффект Казимира — не единственное проявление вакуумных флуктуаций. В частности, из-за их присутствия реальный фотон в определенных случаях может распасться на два фотона меньшей частоты. Это явление, называемое спонтанным параметрическим рассеянием, было предсказано Д. Н. Клышко (МГУ) в 1966 году, и вскоре после предсказания было обнаружено экспериментально.

9. Эксперименты по параметрическому рассеянию позволяют сравнить спектральную плотность мощности «реальных» фотонов и вакуумных флуктуаций. Поскольку свойства последних известны (для заданной частоты они определяются только значениями фундаментальных констант — скорости света и постоянной Планка), такое сравнение дает возможность абсолютной квантовой фотометрии — измерения характеристик света без использования эталонных источников.

10. Фотоны, рождаемые в динамическом эффекте Казимира, несут отпечаток своего «квантового» происхождения — это так называемый свет с двухмодовым сжатием, статистические свойства которого отличаются от привычных нам источников. Свет, рождаемый при спонтанном параметрическом рассеянии, также обладает необычной статистикой.

Алексей Рубцов,
докт. физ.-мат. наук,
физический факультет МГУ

1. Алексей Паевский. Топ-10 научных новостей «в Натуре». ТрВ-Наука № 1 (95), 17.01.2012, стр. 9

2. C. M. Wilson et al. Nature 479, 376 (2011)