Человек и его микробиом. Отрывок из книги

Джон Тёрни. Я — суперорганизмТёрни Дж. Я — суперорганизм! Человек и его микробиом (Jon Turney. I, Superorganism: Learning to Love Your Inner Ecosystem). — М.: Лаборатория знаний, 2016 (www.pilotlz.ru). Перевод с английского Алексея Капанадзе. Книга вышла в серии Universum (вед. редактор — Ирина Опимах).

В каждом из нас живет множество бактерий и вирусов — во рту, на коже, в кишечнике. Они помогают переваривать пищу и усваивать лекарства, влияют на нашу гормональную и иммунную системы и более того — даже на мозг! Всё это сообщество микроорганизмов ученые назвали микробиомом. Джон Тёрни рассказывает о самых последних исследованиях микробиома, о его возникновении, росте и роли в развитии самых разных болезней (аллергии, диабета, желудочно-кишечных расстройств, рака и шизофрении).

Маленький — не значит простой

Джон Тёрни
Джон Тёрни

Чем так уж важны бактерии? Начнем с того, что это микробы, то есть существа очень-очень маленькие. Длина типичной бактерии по самой длинной оси — от одной до нескольких тысячных миллиметра. А значит, их легко не заметить. Почти всё время нашего собственного (сравнительно краткого) пребывания на планете мы понятия не имели, что они вообще существуют. Судя по вполне достоверным оценкам, на Земле сейчас обитает около 1030 (миллиона триллионов триллионов) бактерий. Однако среди них есть крупные группы, о которых мы почти ничего не знаем. Возможно, мы никогда не установим не только общее количество микроорганизмов на Земле, но даже общее количество их видов.

С другой стороны, раз уж нам известно об их существовании, небольшие размеры и быстрый рост этих существ делают некоторых из них подходящими объектами для исследования — по одному виду в один прием. Поэтому при сравнительно скудных сведениях о глобальной бактериосфере ученые успели в невероятных подробностях изучить некоторые микроорганизмы, особенно всеобщую лабораторную любимицу — E. coli.

Бактерия Escherichia coli («Википедия»)
Бактерия Escherichia coli («Википедия»)

Достаточно хотя бы немного познакомиться с ней, и вы, пусть и не узнав всех бактерий на свете, проникнетесь немалым уважением к тому, на что бактерии способны. Ну да, они могут расти и размножаться, это и делает их живыми. У них имеется полный набор крошечных наноустройств для создания копий собственной ДНК, считывания информации, которую та в себе хранит, и для передачи ее белковым молекулам. Они умеют переваривать молекулы пищи, извлекать энергию при их расщеплении и использовать полученные фрагменты молекул для создания новых.

Основную часть того, что нам известно об этих процессах — от подробностей генетического кода (одного и того же у всех организмов на Земле) до сети химических трансформаций, служащих основой метаболизма, — мы узнали из экспериментов над бесчисленными колониями E. coli в лабораторных чашках. Но вклад данного микроорганизма в науку этим далеко не ограничивается. Дальнейшие опыты, зачастую проводимые в условиях, более приближенных к жизни в природе, нежели к существованию в лабораторной чашке, и не имеющих в этой чашке конкурентов, показали, что бактерии способны на еще очень многое.

213-0067На молекулярном уровне у них имеются своего рода органы чувств. Нет, они не умеют видеть или слышать, однако E. coli и другие микробы умеют обнаруживать изменение концентрации значимых молекул вокруг себя. Они могут самостоятельно перемещаться, используя активно вращающийся миниатюрный жгутик, как своего рода сверхподвижный хвост. Они меняют курс, чтобы приблизиться к молекулам, которые им нравятся (то есть к пище), или чтобы отдалиться от молекул, которые им не нравятся. Они адаптируются к среде, замечая ее изменения (скажем, температурные перепады или уровень доступности определенных питательных веществ). Реакция на меняющиеся условия приводит к включению (или выключению) определенных генов, причем такое включение (выключение) организовано при помощи сложных биохимических цепочек, где связываются друг с другом молекулы, выстроенные особым образом. Одноклеточные реагируют на присутствие других клеток благодаря так называемому «чувству кворума», которое проявляется в том, что определенные функции активируются, лишь когда плотность клеточного населения достигает заданного порогового значения.

Одни бактерии ведут химические войны с другими или же налаживают с ними тесные метаболические отношения, при которых один вид пожирает молекулярную пищу, уже частично обработанную другим в процессе потребления. Зачастую они объединяются в огромные клеточные ансамбли. Это еще не многоклеточная жизнь, но что-то очень похожее на нее по функциям. Бактерии вырабатывают клейкие молекулы, создающие единую слизистую «биопленку», которая удерживает ансамбль вместе. Подобные пленки часто покрывают поверхности, представляющие собой пригодную для обитания экологическую нишу (скажем, ваши зубы), и поддерживают существование долговечной бактериальной системы с изощренным механизмом разделения биохимического труда.

Более того; как показал Джошуа Ледерберг в работах 1940-х годов, принесших ему Нобелевскую премию, они занимаются сексом. Вообще-то, честно говоря, E. coli и другие бактерии преотлично умеют размножаться без помощи чего-либо, даже отдаленно напоминающего секс: они могут создавать клоны генетически идентичных клеток (правда, изредка при этом случаются мутации). Но бактерии не отметают и другие варианты. Время от времени две бактериальные клетки соединяются, и ДНК передается от одной к другой. Благодаря такому обмену генами микробный мир выглядит совершенно иным по сравнению с миром многоклеточных эукариотических организмов с их четким разграничением на виды. В мире микробов постоянно происходит обмен генетическими фрагментами посредством переноса кусков бактериальной хромосомы или движения небольших колец ДНК (плазмид), имеющихся у большинства бактерий, либо при помощи бактериальных вирусов. Если ничего такого не происходит, бактерия может даже захватить свободную ДНК из окружающего пространства и включить какую-то ее частьв состав своей хромосомы (этот процесс именуется трансформацией).

Кроме того, при мутации бактериальная ДНК обычно меняется быстрее, чем ДНК в хромосомах других организмов, и не только из-за высокой скорости размножения. Микробы в стрессовых ситуациях (например, когда мало пищи) копируют ДНК менее точно и чинят ее хуже. Что это — просто побочное следствие стресса или же хитроумный эволюционный трюк, позволяющий быстро дать множество всевозможных ответов на возникшую проблему? Биологи продолжают об этом спорить, но в любом случае такая гипермутация позволяет осуществлять стремительные изменения.

Человекоподобные бактерии, бактериеподобные люди

Итак, бактерии сложнее, чем кажутся на первый взгляд. Они обладают приспособляемостью и изобретательностью, как и подобает форме жизни, которой как-то удается уцелеть на протяжении трех-четырех миллиардов лет. Жизнь и эволюционная история этих наших предков (а ныне — и современников) переплетены с нашей собственной жизнью и эволюционной историей, соединены с ними бесчисленными связями, разбираться в которых мы начали только недавно.

Взять хотя бы неудобный для кого-то факт, побудивший меня написать эту книгу: они живут внутри нас. И тут Escherichia coli не исключение. Первые образцы данной бактерии выделены еще в 1885 году Теодором Эшерихом — из первых испражнений новорожденных младенцев. Эти бактерии оказалось легче изолировать, чем большинство других кишечных бактерий, поскольку они живут как в присутствии, так и в отсутствие кислорода. Целый ряд невиннейших штаммов E. coli обитает в нашей толстой кишке. Они прекрасно приспособились к жизни в кишечнике теплокровных существ. С другой стороны, существует такой же разнообразный набор штаммов E. coli, вызывающих неприятные симптомы — пищевого отравления или чего-нибудь похуже.

Есть и куда более странная форма совместного проживания, в которую ученые много лет отказывались верить. Мы знаем, что основа всей биосферы — одноклеточные прокариоты. И более сложные формы жизни вроде нас с вами, со всеми «добавлениями», пришедшими с появлением эу-кариотической клетки, наделенной ядром, несут в себе потомков древних бактерий.

Наши высокоорганизованные, крупные по объему эукариотические клетки обладают значительно большей энергетической подпиткой по сравнению с прокариотами, даже если пересчитать энергию на их размеры. Кардинально новый взгляд на эволюцию клеток помогает понять, как такое могло получиться1. Эукариоты получают энергию от внутриклеточных «электростанций» — митохондрий. Митохондрии чем-то похожи на бактерии. Почему? Потому что это и есть бактерии. Точнее, когда-то они были бактериями. Они давно утратили способность к независимому существованию, но по-прежнему обладают небольшим собственным геномом, кодирующим (помимо всего прочего) копирование ДНК и аппарат чтения информации; это больше напоминает бактериальные механизмы, а не те сильно отличающиеся от них макромолекулярные чудеса, которые выполняют ту же работу в клеточном ядре.

Объяснение предложила выдающийся американский биолог Линн Маргулис (1938–2011) еще в 1960-е годы. По ее мнению, некий бактериальный флирт миллиарды лет назад привел к симбиозу, при котором одна бактерия стала жить внутри другой. Внутренний колонист затем адаптировался к новым условиям: получает всё необходимое для жизни из окружающей его клетки в обмен на ту энергию, которую он высвобождал, химически расщепляя сахара с помощью кислорода. Результатом стало появление специализированной органеллы («очень маленького органа») в самой настоящей, вполне полноценной эукариотической клетке. Эта органелла — митохондрия — действовала как своего рода миниатюрная электростанция. То, что когда-то было бактерией, сперва стало внутриклеточным паразитом, а затем — более простым по структуре мешочком складчатых мембран, предназначенным для выработки энергии.

Маргулис рассматривала эту необратимую кооперацию (эндосимбиоз) как один из ключевых эволюционных механизмов и полагала, что некоторые другие части эукариотических клеток имеют такое же происхождение. Гипотеза по-прежнему считается противоречивой, но сейчас уже мало кто спорит с тем, что и митохондрии, и хлоропласты (выполняющие сходные задачи у растений) возникли именно так. Странно думать, что все наши клетки содержат эти древние останки. Иной раз число таких реликтов доходит до тысяч. Они до сих пор делятся и размножаются независимо. Все мы до сих пор живы благодаря этой колоссальной коллекции деградировавших бактерий.

Наконец, есть бактериальные останки, выполняющие другую важную работу во всех прочих разновидностях клеток. В сущности это просто следствие хода истории жизни и эволюции по нисходящей. Все дарвиновские «бесконечные прекраснейшие формы жизни» имеют общего предка; он, вероятно, весьма походил на некоторые бактерии, существующие и поныне. Этот наш древний прародитель уже успел приобрести многие необходимые гены и многие важные функции, которые белки выполняют в клетках; это говорит, что белки, а значит, и гены, где хранится информация для их синтеза, очень мало меняются в ходе эволюции. Когда белки уже действуют, любые изменения, происходящие посредством мутаций ДНК, имеют тенденцию ухудшать их работу, так что это изменение исчезает в ходе естественного отбора, неустанно отсеивающего неподходящие новые идеи.

В принципе-то мы всё это знали, но недавние подвиги генных расшифровщиков, давшие нам возможность исследовать целые геномы крупных и малых организмов, показали, сколь важны эти факторы и как тесно взаимосвязаны все обитатели нашей планеты. Сравните генетические цепочки — и вы обнаружите, что 37% генов человека очень похожи на гены бактерий. А значит, эти гены уже появились у нашего общего предка больше двух миллиардов лет назад. Между тем мы делим с другими эукариотами 28% генов, с другими животными — 16% генов, а с другими приматами (у нас тоже есть соответствующий общий предок) — всего 6%2. Так что какой бы вклад сожительствующие с нами бактерии ни вносили в нашу жизнь сегодня, в эволюционном смысле более трети наших генов (в числе прочих даров) предоставлены нам бактериями.

Джон Тёрни


1 Видимо, само появление сложных клеток — событие в высшей степени маловероятное, раз уж в течение двух миллиардов лет единственными живыми организмами на Земле оставались бактерии. Почему химические и физические процессы, сформировавшие энергетику клеточной эволюции, сделали столь маловероятным возникновение эукариотической сложности? Этот вопрос объясняется в замечательно аргументированной книге Ника Лейна «Жизненно важный вопрос» (Nick Lane, The Vital Question. — New York: WW Norton & Company, 2015).

2 McFall-Ngai и др., 2013.

Подписаться
Уведомление о
guest

1 Комментарий
Встроенные отзывы
Посмотреть все комментарии
aosypov
aosypov
7 года (лет) назад

> мы делим с другими эукариотами 28% генов, с другими животными — 16% генов, а с другими приматами (у нас тоже есть соответствующий общий предок) — всего 6%

Не делим, а имеем отличия. Иначе получается, что с близкими родственниками у нас общих генов меньше, чем с более дальними.

Оценить: 
Звёзд: 1Звёзд: 2Звёзд: 3Звёзд: 4Звёзд: 5 (Пока оценок нет)
Загрузка...